You are given an array arr
of positive integers. You are also given the array queries
where queries[i] = [lefti, righti]
.
For each query i
compute the XOR of elements from lefti
to righti
(that is, arr[lefti] XOR arr[lefti + 1] XOR ... XOR arr[righti]
).
Return an array answer
where answer[i]
is the answer to the ith
query.
Example 1:
Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]] Output: [2,7,14,8] Explanation: The binary representation of the elements in the array are: 1 = 0001 3 = 0011 4 = 0100 8 = 1000 The XOR values for queries are: [0,1] = 1 xor 3 = 2 [1,2] = 3 xor 4 = 7 [0,3] = 1 xor 3 xor 4 xor 8 = 14 [3,3] = 8
Example 2:
Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]] Output: [8,0,4,4]
Constraints:
1 <= arr.length, queries.length <= 3 * 104
1 <= arr[i] <= 109
queries[i].length == 2
0 <= lefti <= righti < arr.length
Approach 01
-
C++
-
Python
class Solution { public: vector<int> xorQueries(vector<int>& inputArray, vector<vector<int>>& queries) { vector<int> result; // To store the result of each query vector<int> prefixXor(inputArray.size() + 1); // To store prefix XOR values // Calculate prefix XOR for the input array for (int i = 0; i < inputArray.size(); ++i) prefixXor[i + 1] = prefixXor[i] ^ inputArray[i]; // Process each query for (const vector<int>& query : queries) { const int startIndex = query[0]; const int endIndex = query[1]; // XOR from startIndex to endIndex can be found using prefix XOR values result.push_back(prefixXor[startIndex] ^ prefixXor[endIndex + 1]); } return result; } };
class Solution: def xorQueries(self, inputArray, queries): # To store prefix XOR values prefixXor = [0] * (len(inputArray) + 1) result = [] # To store the result of each query # Calculate prefix XOR for the input array for i in range(len(inputArray)): prefixXor[i + 1] = prefixXor[i] ^ inputArray[i] # Process each query for query in queries: startIndex = query[0] endIndex = query[1] # XOR from startIndex to endIndex can be found using prefix XOR values result.append(prefixXor[startIndex] ^ prefixXor[endIndex + 1]) return result
Time Complexity
- Calculating Prefix XOR:
We compute the prefix XOR values for the input array. This requires a single pass over the array, resulting in a time complexity of \(O(n)\), where
n
is the size of the input array. - Processing Queries:
For each query, we compute the XOR of a range using the prefix XOR values. Each query operation is performed in \(O(1)\) time. Let
m
be the number of queries; the total time complexity for processing all queries is \(O(m)\). - Overall Time Complexity:
The overall time complexity is \(O(n + m)\), where
n
is the size of the input array andm
is the number of queries.
Space Complexity
- Space for Prefix XOR Array:
The prefix XOR array requires \(O(n)\) space, where
n
is the size of the input array. - Space for Result Vector:
The result vector stores the XOR values for each query, requiring \(O(m)\) space, where
m
is the number of queries. - Overall Space Complexity:
The overall space complexity is \(O(n + m)\), which accounts for the space needed for the prefix XOR array and the result vector.