1863. Sum of All Subset XOR Totals

The XOR total of an array is defined as the bitwise XOR of all its elements, or 0 if the array is empty.

  • For example, the XOR total of the array [2,5,6] is 2 XOR 5 XOR 6 = 1.

Given an array nums, return the sum of all XOR totals for every subset of nums

Note: Subsets with the same elements should be counted multiple times.

An array a is a subset of an array b if a can be obtained from b by deleting some (possibly zero) elements of b.

Example 1:

Input: nums = [1,3]
Output: 6
Explanation: The 4 subsets of [1,3] are:
- The empty subset has an XOR total of 0.
- [1] has an XOR total of 1.
- [3] has an XOR total of 3.
- [1,3] has an XOR total of 1 XOR 3 = 2.
0 + 1 + 3 + 2 = 6

Example 2:

Input: nums = [5,1,6]
Output: 28
Explanation: The 8 subsets of [5,1,6] are:
- The empty subset has an XOR total of 0.
- [5] has an XOR total of 5.
- [1] has an XOR total of 1.
- [6] has an XOR total of 6.
- [5,1] has an XOR total of 5 XOR 1 = 4.
- [5,6] has an XOR total of 5 XOR 6 = 3.
- [1,6] has an XOR total of 1 XOR 6 = 7.
- [5,1,6] has an XOR total of 5 XOR 1 XOR 6 = 2.
0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28

Example 3:

Input: nums = [3,4,5,6,7,8]
Output: 480
Explanation: The sum of all XOR totals for every subset is 480.

Constraints:

  • 1 <= nums.length <= 12
  • 1 <= nums[i] <= 20

Approach 01:

Time Complexity:

  • Recursive DFS Calls:

    Each element has two choices: either include it in the XOR subset or exclude it. Hence, the total number of recursive calls is \( 2^n \), where \( n \) is the size of the input array.

  • Total Time Complexity:

    \( O(2^n) \)

class Solution {
public:
    int subsetXORSum(vector<int>& nums) { return dfs(nums, 0, 0); }

private:
    int dfs(const vector<int>& nums, int i, int xors) {
        if (i == nums.size())
            return xors;

        const int x = dfs(nums, i + 1, xors);
        const int y = dfs(nums, i + 1, nums[i] ^ xors);
        return x + y;
    }
};
class Solution:
    def subsetXORSum(self, nums: List[int]) -> int:
        def solve(i: int, xors: int) -> int:
            if i == len(nums):
                return xors

            x = solve(i + 1, xors)
            y = solve(i + 1, nums[i] ^ xors)
            return x + y

        return solve(0, 0)

Space Complexity:

  • Recursive Call Stack:

    The maximum depth of the recursion tree is \( n \), so the call stack can grow up to \( O(n) \).

  • Auxiliary Data Structures:

    No extra space besides the input vector and recursion stack is used.

  • Total Space Complexity:

    \( O(n) \)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top