A parentheses string is a non-empty string consisting only of '(' and ')'. It is valid if any of the following conditions is true:
- It is
(). - It can be written as
AB(Aconcatenated withB), whereAandBare valid parentheses strings. - It can be written as
(A), whereAis a valid parentheses string.
You are given a parentheses string s and a string locked, both of length n. locked is a binary string consisting only of '0's and '1's. For each index i of locked,
- If
locked[i]is'1', you cannot changes[i]. - But if
locked[i]is'0', you can changes[i]to either'('or')'.
Return true if you can make s a valid parentheses string. Otherwise, return false.
Example 1:

Input: s = "))()))", locked = "010100"
Output: true
Explanation: locked[1] == '1' and locked[3] == '1', so we cannot change s[1] or s[3].
We change s[0] and s[4] to '(' while leaving s[2] and s[5] unchanged to make s valid.
Example 2:
Input: s = "()()", locked = "0000" Output: true Explanation: We do not need to make any changes because s is already valid.
Example 3:
Input: s = ")", locked = "0"
Output: false
Explanation: locked permits us to change s[0].
Changing s[0] to either '(' or ')' will not make s valid.
Constraints:
n == s.length == locked.length1 <= n <= 105s[i]is either'('or')'.locked[i]is either'0'or'1'.
Approach 01:
-
C++
-
Python
#include <string>
#include <algorithm>
using namespace std;
class Solution {
public:
bool canBeValid(string brackets, string locked) {
// If the length of the string is odd, it's impossible to make valid parentheses
if (brackets.length() % 2 == 1)
return false;
// Check both directions: left-to-right and right-to-left
const bool leftToRightIsValid = validateBrackets(brackets, locked, true);
reverse(brackets.begin(), brackets.end());
reverse(locked.begin(), locked.end());
const bool rightToLeftIsValid = validateBrackets(brackets, locked, false);
return leftToRightIsValid && rightToLeftIsValid;
}
private:
bool validateBrackets(const string& brackets, const string& locked, bool isForward) {
int changeableCount = 0; // Count of brackets that can be changed
int openCount = 0; // Count of open brackets
int closeCount = 0; // Count of close brackets
for (int i = 0; i < brackets.length(); ++i) {
const char currentBracket = brackets[i];
const char isLocked = locked[i];
if (isLocked == '0') {
++changeableCount; // Bracket can be changed
} else if (currentBracket == '(') {
++openCount; // Count open brackets
} else { // currentBracket == ')'
++closeCount; // Count close brackets
}
// Check if it's valid based on the current counts
if (isForward && changeableCount + openCount - closeCount < 0)
return false;
if (!isForward && changeableCount + closeCount - openCount < 0)
return false;
}
return true;
}
};
class Solution:
def canBeValid(self, brackets: str, locked: str) -> bool:
# If the length of the string is odd, it's impossible to make valid parentheses
if len(brackets) % 2 == 1:
return False
# Check both directions: left-to-right and right-to-left
leftToRightIsValid = self._validateBrackets(brackets, locked, isForward=True)
brackets = brackets[::-1]
locked = locked[::-1]
rightToLeftIsValid = self._validateBrackets(brackets, locked, isForward=False)
return leftToRightIsValid and rightToLeftIsValid
def _validateBrackets(self, brackets: str, locked: str, isForward: bool) -> bool:
changeableCount = 0 # Count of brackets that can be changed
openCount = 0 # Count of open brackets
closeCount = 0 # Count of close brackets
for currentBracket, isLocked in zip(brackets, locked):
if isLocked == '0':
changeableCount += 1 # Bracket can be changed
elif currentBracket == '(':
openCount += 1 # Count open brackets
else: # currentBracket == ')'
closeCount += 1 # Count close brackets
# Check if it's valid based on the current counts
if isForward and changeableCount + openCount - closeCount < 0:
return False
if not isForward and changeableCount + closeCount - openCount < 0:
return False
return True
Time Complexity:
- Processing Each Character:
The algorithm iterates through the input string twice: once for the left-to-right validation and once for the right-to-left validation. Each iteration processes every character exactly once, resulting in \( O(n) \), where \( n \) is the length of the input string.
- Reversals:
The reverse operations on the string and locked arrays also take \( O(n) \), but this cost is linear and happens only once per validation.
- Overall Time Complexity:
\( O(n) \).
Space Complexity:
- Extra Variables:
The algorithm uses a constant amount of extra space for variables like
changeableCount,openCount, andcloseCount. - Input Modifications:
Although the input strings are reversed, this does not require additional space beyond the original strings.
- Overall Space Complexity:
\( O(1) \).