Given a 0-indexed integer array nums
of length n
and an integer k
, return the number of pairs (i, j)
where 0 <= i < j < n
, such that nums[i] == nums[j]
and (i * j)
is divisible by k
.
Example 1:
Input: nums = [3,1,2,2,2,1,3], k = 2 Output: 4 Explanation: There are 4 pairs that meet all the requirements: - nums[0] == nums[6], and 0 * 6 == 0, which is divisible by 2. - nums[2] == nums[3], and 2 * 3 == 6, which is divisible by 2. - nums[2] == nums[4], and 2 * 4 == 8, which is divisible by 2. - nums[3] == nums[4], and 3 * 4 == 12, which is divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 1 Output: 0 Explanation: Since no value in nums is repeated, there are no pairs (i,j) that meet all the requirements.
Constraints:
1 <= nums.length <= 100
1 <= nums[i], k <= 100
Approach 01:
-
C++
-
Python
#include <vector> #include <unordered_map> using namespace std; class Solution { public: int countPairs(vector<int>& nums, int k) { unordered_map<int, vector<int>> numberToIndices; for (int index = 0; index < nums.size(); ++index) { int number = nums[index]; numberToIndices[number].push_back(index); } int validPairCount = 0; for (const auto& [number, indices] : numberToIndices) { int indexCount = indices.size(); for (int i = 0; i < indexCount - 1; ++i) { for (int j = i + 1; j < indexCount; ++j) { if ((indices[i] * indices[j]) % k == 0) { ++validPairCount; } } } } return validPairCount; } };
from typing import List from collections import defaultdict class Solution: def countPairs(self, nums: List[int], k: int) -> int: numberToIndices = defaultdict(list) for index, number in enumerate(nums): numberToIndices[number].append(index) validPairCount = 0 for indices in numberToIndices.values(): indexCount = len(indices) for i in range(indexCount - 1): for j in range(i + 1, indexCount): if (indices[i] * indices[j]) % k == 0: validPairCount += 1 return validPairCount
Time Complexity:
- Mapping Numbers to Indices:
Iterates through the array once to build the hash map, which takes \( O(n) \) time.
- Counting Valid Pairs:
For each list of indices with the same number, we check all pairs, which takes \( O(m^2) \) per group where \( m \) is the number of indices.
In the worst case (all elements are the same), this becomes \( O(n^2) \).
- Total Time Complexity:
\( O(n^2) \) in the worst case.
Space Complexity:
- Hash Map Storage:
Stores each number and its list of indices, taking up to \( O(n) \) space.
- Total Space Complexity:
\( O(n) \)