You are given a string s
of lowercase English letters and a 2D integer array shifts
where shifts[i] = [starti, endi, directioni]
. For every i
, shift the characters in s
from the index starti
to the index endi
(inclusive) forward if directioni = 1
, or shift the characters backward if directioni = 0
.
Shifting a character forward means replacing it with the next letter in the alphabet (wrapping around so that 'z'
becomes 'a'
). Similarly, shifting a character backward means replacing it with the previous letter in the alphabet (wrapping around so that 'a'
becomes 'z'
).
Return the final string after all such shifts to s
are applied.
Example 1:
Input: s = "abc", shifts = [[0,1,0],[1,2,1],[0,2,1]] Output: "ace" Explanation: Firstly, shift the characters from index 0 to index 1 backward. Now s = "zac". Secondly, shift the characters from index 1 to index 2 forward. Now s = "zbd". Finally, shift the characters from index 0 to index 2 forward. Now s = "ace".
Example 2:
Input: s = "dztz", shifts = [[0,0,0],[1,1,1]] Output: "catz" Explanation: Firstly, shift the characters from index 0 to index 0 backward. Now s = "cztz". Finally, shift the characters from index 1 to index 1 forward. Now s = "catz".
Constraints:
1 <= s.length, shifts.length <= 5 * 104
shifts[i].length == 3
0 <= starti <= endi < s.length
0 <= directioni <= 1
s
consists of lowercase English letters.
Approach 01:
-
C++
-
Python
#include <vector> #include <string> using namespace std; class Solution { public: string shiftingLetters(string s, vector<vector<int>>& shifts) { int accumulatedShift = 0; // Accumulated shift at each position vector<int> shiftDifferences(s.length() + 1, 0); // Timeline of shifts // Apply shifts to the timeline for (const vector<int>& shift : shifts) { const int startIdx = shift[0]; // Starting index for the shift const int endIdx = shift[1]; // Ending index for the shift const int direction = shift[2]; // Direction of the shift (1 for right, 0 for left) const int shiftValue = direction ? 1 : -1; // +1 for right shift, -1 for left shift shiftDifferences[startIdx] += shiftValue; shiftDifferences[endIdx + 1] -= shiftValue; } // Apply the accumulated shifts to the string for (int i = 0; i < s.length(); ++i) { accumulatedShift = (accumulatedShift + shiftDifferences[i]) % 26; const int newCharPos = (s[i] - 'a' + accumulatedShift + 26) % 26; s[i] = 'a' + newCharPos; } return s; } };
class Solution: def shiftingLetters(self, s: str, shifts: list[list[int]]) -> str: accumulatedShift = 0 # Accumulated shift at each position shiftDifferences = [0] * (len(s) + 1) # Timeline of shifts # Apply shifts to the timeline for shift in shifts: startIdx = shift[0] # Starting index for the shift endIdx = shift[1] # Ending index for the shift direction = shift[2] # Direction of the shift (1 for right, 0 for left) shiftValue = 1 if direction else -1 # +1 for right shift, -1 for left shift shiftDifferences[startIdx] += shiftValue shiftDifferences[endIdx + 1] -= shiftValue # Apply the accumulated shifts to the string s = list(s) # Convert string to list for mutable operations for i in range(len(s)): accumulatedShift = (accumulatedShift + shiftDifferences[i]) % 26 newCharPos = (ord(s[i]) - ord('a') + accumulatedShift + 26) % 26 s[i] = chr(ord('a') + newCharPos) return ''.join(s)
Time Complexity:
- Applying Shifts to the Timeline:
Each shift is processed once, resulting in \( O(m) \), where \( m \) is the number of shift operations.
- Applying Accumulated Shifts to the String:
Iterating over the string takes \( O(n) \), where \( n \) is the length of the string.
- Overall Time Complexity:
\( O(n + m) \), as the contributions of both steps are additive.
Space Complexity:
- Shift Differences Array:
An auxiliary array of size \( n + 1 \) is used, contributing \( O(n) \).
- Other Variables:
Constant space is used for variables like
accumulatedShift
andnewCharPos
, contributing \( O(1) \). - Overall Space Complexity:
\( O(n) \), as the array dominates the space usage.