You are given an integer array nums
and an integer k
. Find the maximum subarray sum of all the subarrays of nums
that meet the following conditions:
- The length of the subarray is
k
, and - All the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions. If no subarray meets the conditions, return 0
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,5,4,2,9,9,9], k = 3 Output: 15 Explanation: The subarrays of nums with length 3 are: - [1,5,4] which meets the requirements and has a sum of 10. - [5,4,2] which meets the requirements and has a sum of 11. - [4,2,9] which meets the requirements and has a sum of 15. - [2,9,9] which does not meet the requirements because the element 9 is repeated. - [9,9,9] which does not meet the requirements because the element 9 is repeated. We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions
Example 2:
Input: nums = [4,4,4], k = 3 Output: 0 Explanation: The subarrays of nums with length 3 are: - [4,4,4] which does not meet the requirements because the element 4 is repeated. We return 0 because no subarrays meet the conditions.
Constraints:
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
Approach 01:
-
C++
-
Python
#include <bits/stdc++.h> using namespace std; class Solution { public: long long maximumSubarraySum(vector<int>& nums, int subarraySize) { long maxSum = 0; long currentSum = 0; int uniqueCount = 0; unordered_map<int, int> frequencyMap; for (int i = 0; i < nums.size(); ++i) { currentSum += nums[i]; if (++frequencyMap[nums[i]] == 1) // New unique element ++uniqueCount; // Remove the element that is sliding out of the window if (i >= subarraySize) { if (--frequencyMap[nums[i - subarraySize]] == 0) --uniqueCount; currentSum -= nums[i - subarraySize]; } // Check if the current subarray has exactly `subarraySize` unique // elements if (i >= subarraySize - 1 && uniqueCount == subarraySize) maxSum = max(maxSum, currentSum); } return maxSum; } };
from typing import List class Solution: def maximumSubarraySum(self, nums: List[int], subarraySize: int) -> int: maxSum = 0 currentSum = 0 uniqueCount = 0 frequencyMap = {} for i in range(len(nums)): currentSum += nums[i] # Add the current number to the frequency map frequencyMap[nums[i]] = frequencyMap.get(nums[i], 0) + 1 if frequencyMap[nums[i]] == 1: # New unique element uniqueCount += 1 # Remove the element sliding out of the window if i >= subarraySize: frequencyMap[nums[i - subarraySize]] -= 1 if frequencyMap[nums[i - subarraySize]] == 0: uniqueCount -= 1 currentSum -= nums[i - subarraySize] # Check if the current subarray has exactly `subarraySize` unique elements if i >= subarraySize - 1 and uniqueCount == subarraySize: maxSum = max(maxSum, currentSum) return maxSum
Time Complexity
- Sliding Window Traversal:
The function iterates through the array using a single loop, visiting each element once. This takes \( O(n) \), where \( n \) is the size of the array.
- Map Operations:
Updating and accessing the frequency map (
unordered_map
) takes \( O(1) \) on average due to hash map operations. These operations are performed for each element, so they contribute \( O(n) \) overall. - Overall Time Complexity:
The overall time complexity is \( O(n) \).
Space Complexity
- Frequency Map:
The space used by the
unordered_map
depends on the number of unique elements in the array. In the worst case (all elements are unique), the space complexity is \( O(k) \), where \( k \) is the subarray size. - Auxiliary Variables:
Variables like
maxSum
,currentSum
, anduniqueCount
take \( O(1) \) space. - Overall Space Complexity:
The overall space complexity is \( O(k) \), where \( k \) is the subarray size.