You are given two positive integers n
and limit
.
Return the total number of ways to distribute n
candies among 3
children such that no child gets more than limit
candies.
Example 1:
Input: n = 5, limit = 2 Output: 3 Explanation: There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
Example 2:
Input: n = 3, limit = 3 Output: 10 Explanation: There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
Constraints:
1 <= n <= 106
1 <= limit <= 106
Approach 01:
-
C++
-
Python
class Solution { public: long long distributeCandies(int totalCandies, int maxCandiesPerChild) { const int limitPlusOne = maxCandiesPerChild + 1; const long oneChildOverLimit = countWays(totalCandies - limitPlusOne); const long twoChildrenOverLimit = countWays(totalCandies - 2 * limitPlusOne); const long threeChildrenOverLimit = countWays(totalCandies - 3 * limitPlusOne); return countWays(totalCandies) - 3 * oneChildOverLimit + 3 * twoChildrenOverLimit - threeChildrenOverLimit; } private: long countWays(int candies) { if (candies < 0){ return 0; } return computeCombination(candies + 2, 2); } long computeCombination(int n, int k) { long result = 1; for (int i = 1; i <= k; ++i){ result = result * (n - i + 1) / i; } return result; } };
class Solution: def distributeCandies(self, totalCandies: int, maxCandiesPerChild: int) -> int: limitPlusOne = maxCandiesPerChild + 1 oneChildOverLimit = self.countWays(totalCandies - limitPlusOne) twoChildrenOverLimit = self.countWays(totalCandies - 2 * limitPlusOne) threeChildrenOverLimit = self.countWays(totalCandies - 3 * limitPlusOne) return (self.countWays(totalCandies) - 3 * oneChildOverLimit + 3 * twoChildrenOverLimit - threeChildrenOverLimit) def countWays(self, candies: int) -> int: if candies < 0: return 0 return self.computeCombination(candies + 2, 2) def computeCombination(self, n: int, k: int) -> int: result = 1 for i in range(1, k + 1): result = result * (n - i + 1) // i return result
Time Complexity:
distributeCandies
function:Calls
countWays
four times, each involvingcomputeCombination
.computeCombination(n, 2)
:Runs a loop of size 2 → \(O(1)\) for each call.
- Total Time Complexity:
\(O(1)\).
Space Complexity:
- Only uses constant extra space for variables and no recursion or dynamic allocation.
- Total Space Complexity:
\(O(1)\).