You are given a 0-indexed array of positive integers nums
and a positive integer limit
.
In one operation, you can choose any two indices i
and j
and swap nums[i]
and nums[j]
if |nums[i] - nums[j]| <= limit
.
Return the lexicographically smallest array that can be obtained by performing the operation any number of times.
An array a
is lexicographically smaller than an array b
if in the first position where a
and b
differ, array a
has an element that is less than the corresponding element in b
. For example, the array [2,10,3]
is lexicographically smaller than the array [10,2,3]
because they differ at index 0
and 2 < 10
.
Example 1:
Input: nums = [1,5,3,9,8], limit = 2 Output: [1,3,5,8,9] Explanation: Apply the operation 2 times: - Swap nums[1] with nums[2]. The array becomes [1,3,5,9,8] - Swap nums[3] with nums[4]. The array becomes [1,3,5,8,9] We cannot obtain a lexicographically smaller array by applying any more operations. Note that it may be possible to get the same result by doing different operations.
Example 2:
Input: nums = [1,7,6,18,2,1], limit = 3 Output: [1,6,7,18,1,2] Explanation: Apply the operation 3 times: - Swap nums[1] with nums[2]. The array becomes [1,6,7,18,2,1] - Swap nums[0] with nums[4]. The array becomes [2,6,7,18,1,1] - Swap nums[0] with nums[5]. The array becomes [1,6,7,18,1,2] We cannot obtain a lexicographically smaller array by applying any more operations.
Example 3:
Input: nums = [1,7,28,19,10], limit = 3 Output: [1,7,28,19,10] Explanation: [1,7,28,19,10] is the lexicographically smallest array we can obtain because we cannot apply the operation on any two indices.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
1 <= limit <= 109
Approach 01:
-
C++
-
Python
#include <vector> #include <algorithm> #include <ranges> class Solution { public: vector<int> lexicographicallySmallestArray(vector<int>& nums, int limit) { vector<int> result(nums.size()); // Group numbers based on the difference condition <= limit vector<vector<pair<int, int>>> groupedNumbers; // Sort numbers with their indices for (const pair<int, int>& numAndIndex : getNumAndIndexes(nums)) { // Start a new group if the difference between num and the last number exceeds the limit if (groupedNumbers.empty() || numAndIndex.first - groupedNumbers.back().back().first > limit) { groupedNumbers.push_back({numAndIndex}); } else { // Append to the existing group groupedNumbers.back().push_back(numAndIndex); } } // Process each group of numbers for (const vector<pair<int, int>>& numAndIndexesGroup : groupedNumbers) { vector<int> sortedNums; vector<int> sortedIndices; for (const auto& [num, index] : numAndIndexesGroup) { sortedNums.push_back(num); sortedIndices.push_back(index); } std::ranges::sort(sortedIndices); // Sort indices to maintain the lexicographical order for (int i = 0; i < sortedNums.size(); ++i) result[sortedIndices[i]] = sortedNums[i]; // Assign sorted values to result } return result; } private: vector<pair<int, int>> getNumAndIndexes(const vector<int>& nums) { vector<pair<int, int>> numAndIndexes; for (int i = 0; i < nums.size(); ++i) numAndIndexes.emplace_back(nums[i], i); std::ranges::sort(numAndIndexes); // Sort pairs based on the numbers return numAndIndexes; } };
class Solution: def lexicographicallySmallestArray(self, nums, limit): result = [0] * len(nums) # Group numbers based on the difference condition <= limit groupedNumbers = [] # Sort numbers with their indices for num, index in self.getNumAndIndexes(nums): # Start a new group if the difference between num and the last number exceeds the limit if not groupedNumbers or num - groupedNumbers[-1][-1][0] > limit: groupedNumbers.append([(num, index)]) else: # Append to the existing group groupedNumbers[-1].append((num, index)) # Process each group of numbers for numAndIndexesGroup in groupedNumbers: sortedNums = [] sortedIndices = [] for num, index in numAndIndexesGroup: sortedNums.append(num) sortedIndices.append(index) sortedIndices.sort() # Sort indices to maintain the lexicographical order for i in range(len(sortedNums)): result[sortedIndices[i]] = sortedNums[i] # Assign sorted values to result return result def getNumAndIndexes(self, nums): numAndIndexes = [(num, index) for index, num in enumerate(nums)] numAndIndexes.sort() # Sort pairs based on the numbers return numAndIndexes
Time Complexity:
- Sorting:
Sorting the numbers based on their values and indices takes \( O(N \log N) \), where \( N \) is the size of the input array
nums
. - Grouping:
Grouping the numbers based on the difference condition takes \( O(N) \), since each element is processed once to check the grouping condition.
- Result Construction:
Constructing the result array involves another \( O(N) \) operation, as each number is assigned its sorted value based on the grouped indices.
- Total Time Complexity:
The overall time complexity is dominated by the sorting step, so the total time complexity is \( O(N \log N) \).
Space Complexity:
- Auxiliary Space:
We need extra space for the
groupedNumbers
andnumAndIndexes
vectors. Each stores \( O(N) \) elements, so the auxiliary space complexity is \( O(N) \). - Total Space Complexity:
The total space complexity is \( O(N) \), which accounts for both the input and auxiliary space used during computation.