You are given an m x n binary matrix matrix.
You can choose any number of columns in the matrix and flip every cell in that column (i.e., Change the value of the cell from 0 to 1 or vice versa).
Return the maximum number of rows that have all values equal after some number of flips.
Example 1:
Input: matrix = [[0,1],[1,1]] Output: 1 Explanation: After flipping no values, 1 row has all values equal.
Example 2:
Input: matrix = [[0,1],[1,0]] Output: 2 Explanation: After flipping values in the first column, both rows have equal values.
Example 3:
Input: matrix = [[0,0,0],[0,0,1],[1,1,0]] Output: 2 Explanation: After flipping values in the first two columns, the last two rows have equal values.
Constraints:
m == matrix.lengthn == matrix[i].length1 <= m, n <= 300matrix[i][j]is either0or1.
Approach 01:
-
C++
-
Python
#include <algorithm>
#include <unordered_set>
#include <vector>
using namespace std;
class Solution {
public:
int maxEqualRowsAfterFlips(vector<vector<int>>& binaryMatrix) {
const int numRows = binaryMatrix.size();
const int numCols = binaryMatrix[0].size();
int maxEqualRows = 0;
vector<int> flippedRow(numCols);
unordered_set<int> processedRows;
for (int currentRow = 0; currentRow < numRows; ++currentRow) {
if (processedRows.contains(currentRow))
continue;
int rowCount = 0;
for (int col = 0; col < numCols; ++col)
flippedRow[col] = 1 ^ binaryMatrix[currentRow][col];
for (int checkRow = 0; checkRow < numRows; ++checkRow) {
if (binaryMatrix[checkRow] == binaryMatrix[currentRow] || binaryMatrix[checkRow] == flippedRow) {
processedRows.insert(checkRow);
++rowCount;
}
}
maxEqualRows = max(maxEqualRows, rowCount);
}
return maxEqualRows;
}
};
from typing import List
class Solution:
def maxEqualRowsAfterFlips(self, binaryMatrix: List[List[int]]) -> int:
numRows = len(binaryMatrix)
numCols = len(binaryMatrix[0])
maxEqualRows = 0
processedRows = set()
for currentRow in range(numRows):
if currentRow in processedRows:
continue
rowCount = 0
flippedRow = [1 ^ binaryMatrix[currentRow][col] for col in range(numCols)]
for checkRow in range(numRows):
if (binaryMatrix[checkRow] == binaryMatrix[currentRow] or
binaryMatrix[checkRow] == flippedRow):
processedRows.add(checkRow)
rowCount += 1
maxEqualRows = max(maxEqualRows, rowCount)
return maxEqualRows
Time Complexity
- Outer Loop (Over Rows):
The function iterates over all rows of the matrix, so this loop runs \( O(m) \), where \( m \) is the number of rows in the binary matrix.
- Inner Loop (Comparing Rows):
For each row in the outer loop, it compares with all rows in the matrix. This nested loop has a complexity of \( O(m \cdot n) \), where \( n \) is the number of columns, because each row comparison involves iterating through all columns.
- Flipping a Row:
Creating the flipped version of the row takes \( O(n) \), as it involves iterating through the columns.
- Overall Time Complexity:
Combining these, the overall time complexity is \( O(m^2 \cdot n) \), dominated by the nested loops over rows and columns.
Space Complexity
- Flipped Row:
The
flippedRowvector stores \( n \) elements, where \( n \) is the number of columns. This requires \( O(n) \) space. - Processed Rows Set:
The
processedRowsset can store up to \( m \) elements (one for each row). This requires \( O(m) \) space. - Input Matrix:
The input matrix
binaryMatrixis given and does not contribute to additional space usage. - Overall Space Complexity:
The overall space complexity is \( O(m + n) \), as the set and vector dominate the space usage.