Given a 0-indexed integer array nums of length n and an integer k, return the number of pairs (i, j) where 0 <= i < j < n, such that nums[i] == nums[j] and (i * j) is divisible by k.
Example 1:
Input: nums = [3,1,2,2,2,1,3], k = 2 Output: 4 Explanation: There are 4 pairs that meet all the requirements: - nums[0] == nums[6], and 0 * 6 == 0, which is divisible by 2. - nums[2] == nums[3], and 2 * 3 == 6, which is divisible by 2. - nums[2] == nums[4], and 2 * 4 == 8, which is divisible by 2. - nums[3] == nums[4], and 3 * 4 == 12, which is divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 1 Output: 0 Explanation: Since no value in nums is repeated, there are no pairs (i,j) that meet all the requirements.
Constraints:
1 <= nums.length <= 1001 <= nums[i], k <= 100
Approach 01:
-
C++
-
Python
#include <vector>
#include <unordered_map>
using namespace std;
class Solution {
public:
int countPairs(vector<int>& nums, int k) {
unordered_map<int, vector<int>> numberToIndices;
for (int index = 0; index < nums.size(); ++index) {
int number = nums[index];
numberToIndices[number].push_back(index);
}
int validPairCount = 0;
for (const auto& [number, indices] : numberToIndices) {
int indexCount = indices.size();
for (int i = 0; i < indexCount - 1; ++i) {
for (int j = i + 1; j < indexCount; ++j) {
if ((indices[i] * indices[j]) % k == 0) {
++validPairCount;
}
}
}
}
return validPairCount;
}
};
from typing import List
from collections import defaultdict
class Solution:
def countPairs(self, nums: List[int], k: int) -> int:
numberToIndices = defaultdict(list)
for index, number in enumerate(nums):
numberToIndices[number].append(index)
validPairCount = 0
for indices in numberToIndices.values():
indexCount = len(indices)
for i in range(indexCount - 1):
for j in range(i + 1, indexCount):
if (indices[i] * indices[j]) % k == 0:
validPairCount += 1
return validPairCount
Time Complexity:
- Mapping Numbers to Indices:
Iterates through the array once to build the hash map, which takes \( O(n) \) time.
- Counting Valid Pairs:
For each list of indices with the same number, we check all pairs, which takes \( O(m^2) \) per group where \( m \) is the number of indices.
In the worst case (all elements are the same), this becomes \( O(n^2) \).
- Total Time Complexity:
\( O(n^2) \) in the worst case.
Space Complexity:
- Hash Map Storage:
Stores each number and its list of indices, taking up to \( O(n) \) space.
- Total Space Complexity:
\( O(n) \)