You are given an integer array nums and two integers minK and maxK.
A fixed-bound subarray of nums is a subarray that satisfies the following conditions:
- The minimum value in the subarray is equal to
minK. - The maximum value in the subarray is equal to
maxK.
Return the number of fixed-bound subarrays.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1,3,5,2,7,5], minK = 1, maxK = 5 Output: 2 Explanation: The fixed-bound subarrays are [1,3,5] and [1,3,5,2].
Example 2:
Input: nums = [1,1,1,1], minK = 1, maxK = 1 Output: 10 Explanation: Every subarray of nums is a fixed-bound subarray. There are 10 possible subarrays.
Constraints:
2 <= nums.length <= 1051 <= nums[i], minK, maxK <= 106
Approach 01:
-
C++
-
Python
class Solution {
public:
long long countSubarrays(vector<int>& nums, int minK, int maxK) {
long long totalSubarrays = 0;
int lastMinIndex = -1;
int lastMaxIndex = -1;
int lastInvalidIndex = -1;
for (int i = 0; i < nums.size(); ++i) {
if (nums[i] < minK || nums[i] > maxK)
lastInvalidIndex = i;
if (nums[i] == minK)
lastMinIndex = i;
if (nums[i] == maxK)
lastMaxIndex = i;
int validSubarrayStart = min(lastMinIndex, lastMaxIndex);
int subarrayCount = validSubarrayStart - lastInvalidIndex;
totalSubarrays += (subarrayCount > 0) ? subarrayCount : 0;
}
return totalSubarrays;
}
};
class Solution:
def countSubarrays(self, nums, minK, maxK):
totalSubarrays = 0
lastMinIndex = -1
lastMaxIndex = -1
lastInvalidIndex = -1
for i in range(len(nums)):
if nums[i] < minK or nums[i] > maxK:
lastInvalidIndex = i
if nums[i] == minK:
lastMinIndex = i
if nums[i] == maxK:
lastMaxIndex = i
validSubarrayStart = min(lastMinIndex, lastMaxIndex)
subarrayCount = validSubarrayStart - lastInvalidIndex
totalSubarrays += subarrayCount if subarrayCount > 0 else 0
return totalSubarrays
Time Complexity:
- Single Pass:
We iterate through the
numsarray exactly once → \(O(n)\). - Total Time Complexity:
\(O(n)\).
Space Complexity:
- Constant Extra Space:
We use only a few integer variables → \(O(1)\).
- Total Space Complexity:
\(O(1)\).